欧宝
专注电气元件品牌销售服务
首页 > 产品中心
产品中心
全国服务热线
400-875-1500
销售热线:13720093566

扫一扫,添加销售经理

在拆了一辆特斯拉后撰写了这份94页的研究报告

时间: 2024-02-14 12:46:52    作者: 欧宝

该篇研报涵盖了车型概况以及拆解详情两大部分,分析了特斯拉Model 3域控制器架构、线束和连接器、电池、电机电控、三电与热管理、汽车车身等6个方面。 “拆车写研报”的趋势,似乎正在席卷证
销售热线
13720093566

扫一扫,添加销售经理
  • 产品介绍

  该篇研报涵盖了车型概况以及拆解详情两大部分,分析了特斯拉Model 3域控制器架构、线束和连接器、电池、电机电控、三电与热管理、汽车车身等6个方面。

  “拆车写研报”的趋势,似乎正在席卷证券行业。6月份海通国际拆解一辆比亚迪后,撰写了一份长达87页的研报,中信证券也加入了拆车行列,拆了一辆特斯拉。

  7月18日,中信证券发布了一篇《从拆解Model 3看智能电动汽车发展的新趋势》的研报,除去开篇介绍、荐股、结尾声明,94页的研报,关于Model 3的拆解内容多达80页。由云基础设施行业、科技产业、新能源汽车行业、汽车及零部件行业、计算机行业6名首席和2名分析师共同完成。

  研报中,中信证券称:希望能够通过对特斯拉Model 3这一智能电动的标杆车型的分析,展现特斯拉作为一家全球头部汽车企业对汽车智能电动化的思考,以期厘清后续产业高质量发展的可能方向,更好地支持相关决策。

  具体来看,该篇研报涵盖了车型概况以及拆解详情两大部分,分析了特斯拉Model 3域控制器架构、线束和连接器、电池、电机电控、三电与热管理、汽车车身等6个方面。

  2.线束和连接器:高压线束和连接器是最大增量,集中式E/E架构减少线.电池:技术代际领先,未来向耐用消费品发展

  汽车的智能化大方向慢慢的变成了了产业共识和市场共识,然而什么叫智能化却没有一个明确的定义。中信证券觉得,智能化的重点是智能汽车的软件“可迭代、可演进”。

  汽车过去的E/E架构是由多个厂商提供ECU组成的电子电气架构,硬件和软件功能都被切割成很多块分布在不同厂家提供的ECU里,使得软件OTA的难度非常大。

  据中信证券,E/E架构由分布式转向域控制结构,软硬件实现解耦,是软件定义汽车的关键,特斯拉的Model 3是域控架构的引领者。

  车身域分为前车身域、左车身域、右车身域,采用位置分区而非功能分区,意在降低布线难度,大量采用HSD芯片(HighSideDriver,高边开关)替代继电器。

  右车身域控制器,与左车身基本对称,但也有不同。右车身域负责超声波雷达以及空调,同时右车身承担的尾部控制功能更多,包括后方的高位刹车灯和后机油泵等。

  特斯拉的另一个重要特色就是智能驾驶,这部分功能通过无人驾驶域控制器(AP)来执行,核心在于特斯拉自主开发的FSD芯片,其余配置则与当前其他无人驾驶控制器方案没有本质区别。

  最核心的前视三目摄像头包含中间的主摄像头以及两侧的长焦镜头和广角镜头,形成不同视野范围的搭配,三个摄像头用的是相同的安森美图像传感器。

  特斯拉更多将座舱视为PC而非手机。中信证券本次拆解的特斯拉Model 3 2020款采用的是第二代座舱域控制器(MCU2)。

  最新一代的特斯拉MCU配置已经与当前最新一代的主流游戏主机较为接近,尤其是GPU算力方面不输索尼PS5和微软Xbox Series X。

  从特斯拉车机与游戏的不断靠拢,我们大家可以看到未来座舱域的发展,第一个方向,即继续推进大算力与强生态;第二个发展方向则是可能与自动驾驶控制器的融合。首先,当前座舱控制器的算力普遍出现了过剩,剩余的算力完全可以用于满足一些驾驶类的应用,例如自动泊车辅助等。其次,一些自动驾驶功能尤其是泊车相关功能需要较多人机交互,这正是座舱控制器的强项。而且,座舱控制器与自动驾驶控制器的融合还能够带来一定的资源复用和成本节约,停车期间可以将主要算力用于进行游戏娱乐,行驶期间则将算力用于保障自动驾驶功能,而且这种资源节约能够让汽车少一个域控制器,按照MCU 3的价格,或许能够为每台车节约上百美元的成本。

  IGBT相当于电力电子领域的“CPU”,属于功率器件门槛最高的赛道之一。功率半导体又称为电力电子器件,是电力电子装置实现电能转换、电路控制的核心器件,按集成度可分为功率IC、功率模块和功率分立器件三大类,其中功率器件又包括二极管、晶闸管、MOSFET和IGBT等。

  相比IGBT,SiC能够带动多个性能全面提升,优势显著。但SiC的高成本制约普及节奏,未来SiC与Si-IGBT可能同步发展,相互补充。

  Model 3作为电动车,电能和电池的管理十分重要,而负责管理电池组的BMS是一个高难度产品。BMS最大的难点之一在于,锂电池安全高效运行的条件十分苛刻。BMS的第二大难点在于,不同的锂电池之间必然存在不一致性。这种不一致性就导致同一时间,在同一电池组内,不同的电池仍然工作在不同的温度、电压、电流下。

  为了解决锂电池运行的这一难题,就必须有可靠的BMS系统来对电池组进行监控和管理,让不同电池的充放电速度和温度趋于均衡。

  车结构日益复杂,功能日益多样,导致线束长度与复杂度提升。线束是汽车电路的网络主体,其连接车上的各个组件,负责相关电力与电信号的传输,被誉为“汽车神经”。汽车智能化与电气化程度的提升,依赖于汽车传感器、ECU(电子控制单元)数量的增加,90年代一辆车的ECU数量大约为十几个,而目前单车ECU数量已增至上百个。控制单元的数量的增加使得网线结构日益复杂,大大增加了车辆中的线束长度。

  而要降低线束复杂程度,则依赖电子电气架构的革新。特斯拉早期的Model S与Model X对架构进行改革,根据功能划分域控制器,整体架构介于分布式和域集中式之间。Model S与Model X车内仅由驾驶域、动力域、底盘域、座舱域、车身域等域控制器构成,因此极大减少ECU的数量并同步缩短了CAN总线的长度,Model S线km。

  中信证券测算线元,高压线束是新能源汽车的主要增量,Model 3为了轻量化,开始用导线代替传统的铜导线,低压数据线在域控化进程下将有所减少。

  同时,高压线束的增量需求与轻量化趋势提升单车价值量,行业空间进一步打开。根据华经产业研究院数据,传统低、中、高端汽车的线元,而新能源车线年线.连接器

  连接器常在导线的两段,同样用于两个有源器件之间的连接,其形式和结构多样,但通常由接触件、绝缘件、壳体、附件组成。按照性能及应用场景的不同,车用连接器可以分为高速连接器、低压连接器和高压连接器。

  在动力电池—电驱高压线束的连接器上,Model 3采用的是TE的HCStak 25。其结构和功能与HCStak 35类似,不同点在于尺寸的大小,能够正常的看到,HCStak 25比HCStak 35更小,因此HCStak 25插座端的端子是20片DEFCON端子组成(HCStak 35为35片),不同的型号共用相同的连接器端子。连接器端子通过数量堆叠的变化能够快速完成不同型号的组装,这体现了连接器模块化生产带来的成本管控优势。

  电池包外观对比:集成度领先同时期车型,目前仍然处于领先地位,Model 3电池包采用4块大模组,与同期的iD.4X,宝马iX 3的电池包相比,采用大模组技术,集成度更高,内部布局更为整洁,电池包技术目前仍处于领先地位。

  最新的2022款Model S上,直线冷却进一步升级为U型直线冷却。U型是指横向来看,每根冷却管在竖直方向U型折叠,单侧流入流出;直线是指俯视来看,U型冷却管直线布置。纵向U型排布的好处是,对于不同位置的电芯的冷却效果更加均匀;直线排布则是保持单管更少的电芯覆盖量,2022款Model S模组内布置11根U型冷却管,单管覆盖电芯数进一步下降至单管144颗。

  2020年特斯拉电池日上,特斯拉发布4680电池,相较于此前采用的2170电池,4680电池的电芯容量是其5倍,能够提高相应车型16%的续航里程,输出功率6倍于2170电池。其中电池直径为46mm是做大电池后成本降低和续航里程提升同时达到最优得出。

  Model 3/Y搭载驱动电机、电机控制器、单挡变速箱三合一驱动系统,集成度高。电机方面,标准续航版后轮搭载永磁同步电机,四驱高性能版后轮搭载永磁同步电机,前轮搭载交流异步电机,采用定子+转自复合油冷系统,Model Y还采用扁线电机,电机功率密度较大程度改善,成本亦有降低。电控方面,Model 3/Y搭载SiC MOSFET,较Model X/SSi IGBT方案逆变器功率密度显著提高。同时受益于驱动系统集成化提高、电机电控等关键零部件升级,Model 3/Y驱动系统效率达89%,较Model S/X提高了6pcts。

  特斯拉热管理系统经历4代发展,在结构集成上不断创新。按照时间序列和匹配车型,特斯拉电动汽车热管理系统技术可以分为4代。

  特斯拉第一代车型传承于燃油车热管理的传统思路,各个热管理回路相对独立。第二代车型中引入四通换向阀,实现电机回路与电池回路的串并联,开始结构集成。第三代Model 3开始进行统一的热源管理,引入电机堵转加热,取消水暖PTC,并采用集成式储液罐,集成冷却回路,简化热管理系统结构。第四代Model Y在结构上采用高度集成的八通阀,对多个热管理系统部件进行集成,以实现热管理系统工作模式的切换。

  电子膨胀阀为电动车热管理精细化管控的重要部件。电子膨胀阀由控制器、执行器和传感器三部分构成。由于电子膨胀阀的感温部件为热电偶或热电阻,可以在低温下准确反映出温度的变化,提供更准确的流量调节,同时电子膨胀阀流量控制范围大、调节精细,弥补了毛细管和热力膨胀阀不能调节的缺点,更适合电动车电子化与热管理精细化的管控。

  从Model 3的拆车情况来看,传统零部件维度,Model 3及特斯拉其他车型在车身材料及工艺、车灯、玻璃和底盘上有许多新技术应用。零部件端的拆解分析,具体如下。

  Model 3采用钢铝混合车身,制造工艺以冲压焊接为主,车身材料为钢铝混合。

  替代传统天窗,特斯拉全景天幕引领行业趋势。2016年,特斯拉宣布旗下Model S和Model 3两大车型的最新款更换全景天幕玻璃。其中Model 3采用了分段式的天幕玻璃,在车顶中部采用了加强横梁,对视野仍有一定的影响,而Model S和Model Y更是取消了中间的横梁,采用了一体式的天幕玻璃。

  对于传统汽车玻璃天窗而言,玻璃供应商是Tier 2,天窗机械及密封部件贡献主要价值量,天窗系统整体单车价值量约为2000~4000元。而天幕玻璃单车价值量约为1500元,玻璃供应商升级为Tier-1,不仅满足了消费者需求,同时降低了主机厂的成本。因此,主机厂更有动力提升全玻璃车顶的配置率。因此,天幕玻璃将为汽车玻璃行业打开新的增长空间。

  线控底盘是实现高级别无人驾驶的必由之路。Model 3底盘逐步实现线控化。

  线控底盘是实现无人驾驶SAEL 3的“执行”基石。无人驾驶系统共分为感知、决策、控制和执行四个部分,其中底盘系统属于无人驾驶中的“执行”机构,是最终实现自动驾驶的核心功能模块。L3及L3以上更高级别自动驾驶的实现离不开底盘执行机构的快速响应和精确执行,以达到和上层的感知、决策和控制的高度协同。而底盘系统的升级也意味着其中驱动系统、制动系统和转向系统等功能模块的升级。所以,线控底盘作为更高级别无人驾驶的执行基石,是发展无人驾驶的具体抓手。